15AME39 - CAD/CAM LABORATORY

L T P C 0 03 2

Course Objectives:-

- To review and train in CAD modeling.
- To train on part programming and program generation from a CAD model.
- To train on machining in various CNC machines.

I. COMPUTER AIDED DRAFTING

- A. Introduction to 3D Modeling
 - 1. Modeling of Component in 3D V block.
 - **2.** Modeling of Component in 3D Open Bearing.
 - 3. Modeling of Component in 3D Angular block.
 - 4. Modeling of Component in 3D Dovetail Guide.
 - 5. Modeling of Component in 3D Dovetail Bracket.
 - 6. Modeling of Component in 3D Dovetail stop
 - 7. Geometric Modeling Using Pro-E or CATIA or solid works or iron CAD (Any four exercises).
- B. Assembly Modeling: Student must do at least two exercises
 - 1. Assembly of a screw jack parts.
 - 2. Assembly of a knuckle joint.
 - 3. Assembly of a Oldham's coupling.
 - 4. Assembly of a footstep bearing.
 - 5. Assembly of a stuffing box.
 - 6. Assembly of a square tool post.

II. COMPUTER AIDED MANUFACTURING

CAM (Any Six exercises)

- a. Introduction to CNC & NC Machines.
- **b.** Introduction to CNC & NC part programming for Different operations like Turning,
- c. Threading, Milling, Drilling etc., (G-Codes & M-Codes).
- d. Experiments on CNC lathe -Turning, Threading operations.
- e. Experiments on Milling Machine Plane Milling, Drilling Operations.
- f. Experiment on Robot pick up an object with & without using teach window.
- g. Developing a CNC code for a given job using.
 - i. Solid works- CAM
 - ii. PRO-E- CAM
 - iii. MASTER CAM
 - iv. Edge CAM

Course Outcomes:-

After successful completion of this course:

- Students will be able to review and train in CAD modeling.
- Design a part or assembly of parts using Computer-Aided Design software.
- Apply top-down design principles to model a design.
- Students would get trained on machining in various CNC machines.

2

